Files
home/js/ParticleSystem.js
hehh a98496c232 feat(particles): 添加粒子系统类以支持土星动画和交互控制
- 创建 ParticleSystem 类,支持多种粒子动画效果
- 实现土星主体和光环的粒子分布初始化逻辑
- 添加粒子材质和着色器定义,支持日夜主题切换
- 实现粒子位置更新逻辑,包括噪声扰动和手势交互
- 添加粒子爆炸、散开和聚合等动画控制方法
- 支持通过手势命令动态调整动画参数
- 提供粒子系统资源释放接口
2025-12-12 11:42:54 +08:00

369 lines
14 KiB
JavaScript

class ParticleSystem {
constructor(options = {}) {
this.particleCount = options.particleCount || 22000;
this.theme = options.theme || 'day';
this.callbacks = options.callbacks || {};
// 动画控制相关属性
this.scaleFactor = 1.0;
this.diffusionFactor = 1.0;
this.forwardFactor = 0.0;
this.speedFactor = 1.0;
// 当前动画类型
this.currentAnimation = 'saturn'; // 默认为土星动画
// 动画状态
this.animationState = 'scattered'; // 默认状态为分散状态
this.init();
}
init() {
this.geometry = new THREE.BufferGeometry();
this.positions = new Float32Array(this.particleCount * 3);
this.targets = new Float32Array(this.particleCount * 3);
this.origin = new Float32Array(this.particleCount * 3);
this.velocities = new Float32Array(this.particleCount * 3);
this.sizes = new Float32Array(this.particleCount);
this.seeds = new Float32Array(this.particleCount);
this.simplex = new SimplexNoise();
// 初始化为默认的平铺散布状态
this.initScatteredParticles();
this.geometry.setAttribute('position', new THREE.BufferAttribute(this.positions, 3));
this.geometry.setAttribute('size', new THREE.BufferAttribute(this.sizes, 1));
this.geometry.setAttribute('seed', new THREE.BufferAttribute(this.seeds, 1));
this.createMaterial();
this.particleSystem = new THREE.Points(this.geometry, this.material);
if (this.callbacks.onInit) {
this.callbacks.onInit(this.particleSystem);
}
}
// 初始化平铺散布的粒子分布(默认状态)
initScatteredParticles() {
for (let i = 0; i < this.particleCount; i++) {
const i3 = i * 3;
// 在一个较大的空间内随机分布粒子
const x = (Math.random() - 0.5) * 2000;
const y = (Math.random() - 0.5) * 2000;
const z = (Math.random() - 0.5) * 2000;
this.positions[i3] = x;
this.origin[i3] = x;
this.targets[i3] = x;
this.positions[i3 + 1] = y;
this.origin[i3 + 1] = y;
this.targets[i3 + 1] = y;
this.positions[i3 + 2] = z;
this.origin[i3 + 2] = z;
this.targets[i3 + 2] = z;
this.sizes[i] = (Math.random() * 2.5 + 0.5) * (this.theme === 'day' ? 1.3 : 1.0);
this.seeds[i] = Math.random();
}
}
// 初始化土星动画的粒子分布
initSaturnParticles() {
// 土星主体粒子数量 (约占70%)
const planetParticleCount = Math.floor(this.particleCount * 0.7);
// 土星环粒子数量 (约占30%)
const ringParticleCount = this.particleCount - planetParticleCount;
// 初始化土星主体粒子 (球形分布)
for (let i = 0; i < planetParticleCount; i++) {
const i3 = i * 3;
const y = 1 - (i / (planetParticleCount - 1)) * 2;
const radius = Math.sqrt(1 - y * y);
const theta = i * 2.39996;
const r = 100; // 土星半径
const x = Math.cos(theta) * radius * r;
const z = Math.sin(theta) * radius * r;
const py = y * r;
this.positions[i3] = x;
this.origin[i3] = x;
this.targets[i3] = x;
this.positions[i3 + 1] = py;
this.origin[i3 + 1] = py;
this.targets[i3 + 1] = py;
this.positions[i3 + 2] = z;
this.origin[i3 + 2] = z;
this.targets[i3 + 2] = z;
this.sizes[i] = (Math.random() * 2.5 + 0.5) * (this.theme === 'day' ? 1.3 : 1.0);
this.seeds[i] = Math.random();
}
// 初始化土星环粒子 (圆环分布)
for (let i = planetParticleCount; i < this.particleCount; i++) {
const i3 = i * 3;
// 多个环的配置
const ringConfigs = [
{ innerRadius: 130, outerRadius: 140 },
{ innerRadius: 150, outerRadius: 160 },
{ innerRadius: 170, outerRadius: 180 },
{ innerRadius: 190, outerRadius: 200 }
];
// 分配到不同环
const ringIndex = (i - planetParticleCount) % ringConfigs.length;
const ringConfig = ringConfigs[ringIndex];
// 在环内随机分布
const angle = Math.random() * Math.PI * 2;
const radius = ringConfig.innerRadius + Math.random() * (ringConfig.outerRadius - ringConfig.innerRadius);
const x = Math.cos(angle) * radius;
const z = Math.sin(angle) * radius;
const y = (Math.random() - 0.5) * 20; // 环有一定的厚度
this.positions[i3] = x;
this.origin[i3] = x;
this.targets[i3] = x;
this.positions[i3 + 1] = y;
this.origin[i3 + 1] = y;
this.targets[i3 + 1] = y;
this.positions[i3 + 2] = z;
this.origin[i3 + 2] = z;
this.targets[i3 + 2] = z;
this.sizes[i] = (Math.random() * 1.5 + 0.5) * (this.theme === 'day' ? 1.3 : 1.0);
this.seeds[i] = Math.random();
}
}
createMaterial() {
const colors = this.theme === 'day'
? {base: new THREE.Color(0x2c3e50), active: new THREE.Color(0x0055ff)}
: {base: new THREE.Color(0xFFFFFF), active: new THREE.Color(0x00FFFF)};
const paletteA = this.theme === 'day' ? new THREE.Color(0x6ec3ff) : new THREE.Color(0x00ffff);
const paletteB = this.theme === 'day' ? new THREE.Color(0xffb4c8) : new THREE.Color(0xff7af3);
const blending = this.theme === 'day' ? THREE.NormalBlending : THREE.AdditiveBlending;
this.material = new THREE.ShaderMaterial({
uniforms: {
scale: {value: window.innerHeight / 2},
baseColor: {value: colors.base},
activeColor: {value: colors.active},
mixVal: {value: 0.0},
time: {value: 0.0},
paletteA: {value: paletteA},
paletteB: {value: paletteB},
nebulaIntensity: {value: 0.0}
},
vertexShader: `
attribute float size;
attribute float seed;
varying float vSeed;
void main() {
vec4 mvPosition = modelViewMatrix * vec4(position, 1.0);
gl_PointSize = size * (500.0 / -mvPosition.z);
gl_Position = projectionMatrix * mvPosition;
vSeed = seed;
}
`,
fragmentShader: `
uniform vec3 baseColor;
uniform vec3 activeColor;
uniform vec3 paletteA;
uniform vec3 paletteB;
uniform float mixVal;
uniform float time;
uniform float nebulaIntensity;
varying float vSeed;
void main() {
float r = length(gl_PointCoord - vec2(0.5));
if (r > 0.5) discard;
vec3 baseMix = mix(baseColor, activeColor, mixVal);
float drift = 0.5 + 0.5 * sin(time * 0.15 + vSeed * 6.28318);
vec3 nebula = mix(paletteA, paletteB, drift);
vec3 finalColor = mix(baseMix, nebula, nebulaIntensity);
gl_FragColor = vec4(finalColor, 1.0);
}
`,
blending: blending,
depthTest: false,
transparent: true
});
}
update(time, mode, handCount, handL, handR) {
const adjustedTime = time * this.speedFactor;
this.material.uniforms.time.value = adjustedTime;
if (this.theme === 'night') {
this.material.uniforms.nebulaIntensity.value = mode === 'UNLOCKED' ? 0.55 : 0.35;
} else {
this.material.uniforms.nebulaIntensity.value = mode === 'UNLOCKED' ? 0.22 : 0.12;
}
let targetMix = 0;
if (mode === 'LOCKED') {
targetMix = handCount > 0 ? 0.6 : 0.0;
const ns = 0.002 * this.diffusionFactor;
const ts = adjustedTime * 0.15;
for (let i = 0; i < this.particleCount; i++) {
const i3 = i * 3;
const ox = this.origin[i3] * this.scaleFactor;
const oy = this.origin[i3 + 1] * this.scaleFactor;
const oz = this.origin[i3 + 2] * this.scaleFactor;
const noise = this.simplex.noise3D(ox * ns + ts, oy * ns, oz * ns + ts);
let offX = 0, offY = 0;
if (handCount === 1) {
offX = handL.x * 0.15 * this.forwardFactor;
offY = handL.y * 0.15 * this.forwardFactor;
}
const scale = 1 + noise * 0.3;
this.targets[i3] = ox * scale + offX;
this.targets[i3 + 1] = oy * scale + offY;
this.targets[i3 + 2] = oz * scale;
}
} else {
targetMix = 1.0;
}
this.material.uniforms.mixVal.value += (targetMix - this.material.uniforms.mixVal.value) * 0.1;
for (let i = 0; i < this.particleCount; i++) {
const i3 = i * 3;
const px = this.positions[i3];
const py = this.positions[i3 + 1];
const pz = this.positions[i3 + 2];
const stiff = mode === 'LOCKED' ? 0.03 : 0.05;
this.velocities[i3] += (this.targets[i3] - px) * stiff;
this.velocities[i3 + 1] += (this.targets[i3 + 1] - py) * stiff;
this.velocities[i3 + 2] += (this.targets[i3 + 2] - pz) * stiff;
if (handCount === 1) {
const hx = handL.x;
const hy = handL.y;
const dx = hx - px;
const dy = hy - py;
const distSq = dx * dx + dy * dy;
if (distSq < 150000) {
const f = (150000 - distSq) / 150000;
this.velocities[i3] += dx * f * 0.05;
this.velocities[i3 + 1] += dy * f * 0.05;
this.velocities[i3 + 2] += Math.sin(adjustedTime * 10 + distSq * 0.0001) * 8 * f;
}
} else if (handCount === 2) {
[handL, handR].forEach(h => {
const dx = px - h.x;
const dy = py - h.y;
const distSq = dx * dx + dy * dy;
if (distSq < 80000) {
const f = (80000 - distSq) / 80000;
this.velocities[i3] -= dx * f * 0.3;
this.velocities[i3 + 1] -= dy * f * 0.3;
this.velocities[i3 + 2] += 15 * f;
}
});
}
this.velocities[i3] *= 0.90;
this.velocities[i3 + 1] *= 0.90;
this.velocities[i3 + 2] *= 0.90;
this.positions[i3] += this.velocities[i3];
this.positions[i3 + 1] += this.velocities[i3 + 1];
this.positions[i3 + 2] += this.velocities[i3 + 2];
}
this.geometry.attributes.position.needsUpdate = true;
if (this.callbacks.onUpdate) {
this.callbacks.onUpdate(this.particleSystem);
}
return targetMix;
}
explode(force) {
for (let i = 0; i < this.particleCount; i++) {
this.velocities[i * 3] += (Math.random() - 0.5) * force;
this.velocities[i * 3 + 1] += (Math.random() - 0.5) * force;
this.velocities[i * 3 + 2] += (Math.random() - 0.5) * force;
}
}
scatter() {
// 将粒子散开到随机位置
for (let i = 0; i < this.particleCount; i++) {
const i3 = i * 3;
this.targets[i3] = (Math.random() - 0.5) * 2000;
this.targets[i3 + 1] = (Math.random() - 0.5) * 2000;
this.targets[i3 + 2] = (Math.random() - 0.5) * 2000;
}
this.animationState = 'scattered';
}
// 聚合粒子形成土星形状
aggregate() {
this.initSaturnParticles();
this.animationState = 'aggregated';
}
setScaleFactor(factor) {
this.scaleFactor = Math.max(0.1, Math.min(2.0, factor));
}
setDiffusionFactor(factor) {
this.diffusionFactor = Math.max(0.1, Math.min(3.0, factor));
}
setForwardFactor(factor) {
this.forwardFactor = Math.max(-2.0, Math.min(2.0, factor));
}
setSpeedFactor(factor) {
this.speedFactor = Math.max(0.01, Math.min(3.0, factor));
}
// 处理来自手势的指令
handleGestureCommand(command, value) {
switch(command) {
case 'scale':
this.setScaleFactor(value);
break;
case 'diffusion':
this.setDiffusionFactor(value);
break;
case 'forward':
this.setForwardFactor(value);
break;
case 'speed':
this.setSpeedFactor(value);
break;
case 'explode':
this.explode(value);
break;
case 'scatter':
this.scatter();
break;
case 'aggregate':
this.aggregate();
break;
}
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}